BIOSYNTHESIS OF ACTINOMYCIN: INCORPORATION OF $[\underline{\text{METHYL}}^2 \text{H}_3]$ METHIONINE, $[^3\text{H}]$ KYNURENINE, AND $[^3\text{H}]$ -3-HYDROXYKYNURENINE

R.B. Herbert

(Department of Organic Chemistry, The University of Leeds, Leeds LS2 9JT)

(Received in UK 7 October 1974; accepted for publication 13 November 1974)

The actinomycins (1) are metabolites of <u>Streptomyces antibioticus</u> which find particular application biochemically in inhibiting DNA transcription. The phenoxazinone skeleton of the antibiotics is known to arise from two molecules of tryptophan <u>via</u>
3-hydroxy-4-methylanthranilic acid (2), 2-4 methionine serving as the source of the aromatic methyl groups. 2,5 Depression of the incorporation of radioactive tryptophan into actinomycin by kynurenine (3)⁴ and 3-hydroxy-4-methylkynurenine (5),6 in washed cells of <u>S. antibioticus</u>, indicates that (3) and (5) may well be biosynthetic intermediates. In contrast 3-hydroxykynurenine (4) was found to have little or no effect on tryptophan incorporation 4,6 thus casting doubt on its participation in actinomycin biosynthesis.

$$\begin{array}{c} O \\ O_2H \\ NH_2 \\ R^2 \\ \end{array}$$

$$(3) R^1 = R^2 = H$$

$$(4) R^1 = H, R^2 = OH$$

$$(5) R^1 = Me, R^2 = OH \\ \end{array}$$

$$(6)$$

The normal metabolism of kynurenine (3) to 3-hydroxykynurenine (4) is mediated by a mixed-function oxidase and thus an arene oxide (as 7) is a likely intermediate. The above observations suggested to us that perhaps actinomycin biosynthesis diverged from normal tryptophan metabolism by methylation of the oxide (7). Attack by the ylide of S-adenosylmethionine on (7) and subsequent proton shifts would afford 3-hydroxy-4-methyl-kynurenine (5) without the intermediacy of 3-hydroxykynurenine (see Scheme). Although this methylation mechanism is unprecedented, sulphur ylides have been proposed as intermediates in the biosynthesis of several naturally occurring compounds.

Scheme

This hypothesis for actinomycin biosynthesis has been examined by feeding [methyl
2H₃]methionine, ⁹ [³H]-3-hydroxykynurenine, ¹⁰ and [³H]kynurenine to <u>S. antibioticus</u>

cultures over a 3 day period during antibiotic production. A 6% incorporation of the

methionine into the phenoxazinone nucleus of actinomycin was recorded. The actinomycin

obtained was converted into dimethylactinocinin (6)¹¹ and subjected to mass spectral analysis.

It was clear from the spectra that only tri- and hexa-deuteric species were present.

This eliminates an ylide methylation mechanism which requires loss of one deuterium atom

on introduction of each methyl group (di- and tetra-deuteriomethylactinocinin) and provides

incidental proof that both aromatic methyl groups originate from methionine.

I thank Professors Challenger and Holliman for helpful discussion and Mr. T. Etherington for technical assistance.

References

- E.F. Gale, E. Cundliffe, P.E. Reynolds, M.H. Richmond, and M.J. Waring,
 The Molecular Basis of Antibiotic Action, J. Wiley and Sons, London, 1972;
 H.M. Sobell, <u>Scientific American</u>, Vol. 231, August 1974, p. 82.
- A. Sivak, M.L. Meloni, F. Nobili, and E. Katz, Biochim. Biophys. Acta, 57, 283 (1962).
- 3. E. Katz and H. Weissbach, J. Biol. Chem., 237, 882 (1962).
- 4. H. Weissbach, B.G. Redfield, V. Beaven, and E. Katz, <u>J. Biol. Chem.</u>, <u>240</u>, 4377 (1965).
- A.J. Birch, D.W. Cameron, P.W. Holloway, and R.W. Rickards, <u>Tetrahedron Letters</u>,
 No. 25, p. 26 (1960).
- 6. D. Perlman, S. Otani, K.L. Perlman, and J.E. Walker, J. Antibiotics, 26, 289 (1973).

- Y. Saito, O. Hayaishi, and S. Rethberg, <u>J. Biol. Chem.</u>, <u>229</u>, 921 (1957);
 G.A. Hamilton, <u>Adv. Enzymol.</u>, <u>32</u>, 55 (1969).
- 8. B.M. Trost and W.G. Biddlecom, <u>J. Org. Chem.</u>, <u>38</u>, 3438 (1973) and refs. cited.
- 9. L.M. Jackman, I.G. O'Brien, G.B. Cox, and F. Gibson, Biochim. Biophys. Acta, 141, 1 (1967).
- 10. I. Ishiguro and B. Linzen, Z. Physiol. Chem., 340, 286 (1965). Tritiation of kynurenine was achieved in a similar way.
- 11. H. Brockmann, and H. Muxfeldt, <u>Ber.</u>, <u>91</u>, 1242 (1958); H. Brockmann and H. Gröne, <u>Ber.</u>, <u>91</u>, 773 (1958).